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The growth of a diffusion-limited-aggregation (DLA) cluster with mass M and radius of gyration
R is described by a set of growth probabilities {p;}, where p; is the probability that the perimeter site
7 will be the next to grow. We introduce the joint distribution N (o, z, M), where N(a,z, M)dadz
is the number of perimeter sites with a values in the range a < a; < a+ da (a sites) and located in
the annulus z < z; < = + dz around the cluster seed. Here, a; = —Ilnp;/InR if p; > 0, z; = r;/R,
and r; is the distance of site ¢ from the seed of the DLA cluster. We use N(a,z, M) to relate
multifractal and multiscaling properties of DLA. In particular, we find that for large M the location
of the « sites is peaked around a fixed value Z(a); in contrast, the perimeter sites with p; = 0 are

uniformly distributed over the DLA cluster.

PACS number(s): 68.70.+w, 61.43.Hv, 05.40.+j, 81.10.—h

I. INTRODUCTION

The growth of a diffusion-limited-aggregation (DLA)
[1-14] cluster with mass M is described by the set of
growth probabilities {p;} [15-18] where p; is the proba-
bility that perimeter site 7 will be the next to grow. One
way to analyze the set {p;} is by calculating the “growth-
probability distribution” n(«, M), where n(a, M)da is
the number of perimeter sites with a < a; < a + da,

o; = —Inp;/InR, (1)

and R is the radius of gyration of the cluster [18,19].
We call a sites those sites which are characterized by
the same value of a. The main motivation for studying
the distribution n(a, M) is its relation to the multifractal
spectrum f(a) [17,18,20,21] of the “measure” {p;}. We
define f(a, M) through

n(a, M) = M¥HeM) (2)

where v is the inverse fractal dimension of DLA, R ~ M".
If for large M f(a, M) converges to an M-independent
function f(«), then f(a) is usually called the multi-
fractal spectrum. For two-dimensional (2D) DLA, there
exist several studies [22-24] proposing different conver-
gence behaviors and functional forms of f(a) in the limit
M — oo. However, these considerations will not be es-
sential for our arguments concerning the relation of mul-
tiscaling and multifractality. Henceforth we will only as-
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sume that some f(a) exists.

During the process of calculating n(a, M), the infor-
mation about the location of the « sites is lost. How-
ever, some information about the location of the growth
sites and their associated values p; may be obtained
from the Plischke-Racz probability P(z, M) [25], where
P(z,M)dz is the probability that the next particle will
be deposited at a rescaled distance z < z; < z + dz.
Here z; = r;/R and r; is the distance from the cluster
seed. For DLA, the function P(z, M) displays a peak at
a constant value Z of the deposition radius [25].

A simple form for P(z, M) is the Gaussian function

1 (z— :i)zjl
where £2 denotes the mean-square width of the depo-
sition zone. Plischke and Récz (PR) [25] suggest that
£~ MY "= 1 < v, where v is the inverse fractal dimen-
sion of DLA, R ~ MV, and v/ an independent exponent.
However, Meakin and Sander [26] find that v’ approaches
v as M increases. They also argue that v = v/ in the limit
M — co.

If (/€)% ~ 2c1ln M [27)] with constant ¢, then P(z, M)
takes the form

P(z,M) =

1
\V2m&2

where from (3) ¢(z) = ¢(z/Z — 1)2 and Cpr(z) = 1. In

P(z,M) = M~*® Cpg(z), 4)
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general, if Cpr(z) is a generic function of x and ¢(x) is
independent of z we have conventional scaling while if
¢(z) is = dependent we say that we have multiscaling.

Next, we introduce the annular density pa(z, M),
where p4(z, M)dr is the number of particles in an an-
nulus [z, z + dz] and related to the conventional particle
density p(r, M) by pa(x, M)dx = 27rp(r, M)dr. Since
the change of p4(x, M) with increasing cluster mass is
given by P(z, M) [25], i.e.,

%pA(w,M) = P(z,M), (5)
it was suggested [28] to write pa(z, M) in the same mul-
tiscaling form as Eq. (4),

pa(z, M) = "'D(E)Cp(x)’ (6)

where D(z) is the fractal dimension for a thin annulus
with average radius z and C,(z) is an amplitude. Note
that if ¢ = ¢(x) in Eq. (4), then also D = D(z) in (6).
Multiscaling in (6) has been supported by simulations
[28]. Whereas multiscaling for clusters with M < 10°
has been confirmed very recently by Ossadnik [29], the
same study analyzes one very large off-lattice cluster of
M =5 x 107 arriving at an ambiguous result, which is
consistent with both multiscaling and standard scaling of
pa(z, M).

As demonstrated in Ref. [27], multiscaling results if
the « sites are “localized” in space. Here, we study the
nature of the “localization” of the « sites and the non-
localized behavior of the p; = 0 (“dead”) perimeter sites
(Secs. II and III). The consequences for the multiscaling
hypothesis of P(z, M) and p4(z, M) will be discussed in
Sec. IV. Moreover, we introduce the notion of a mul-
tifractal spectrum in an annulus and find an intriguing
combination of multifractal and multiscaling properties
(Sec. V) [30].

II. THE JOINT DISTRIBUTION FUNCTION

In this section we introduce the joint distribution func-
tion N(a,z, M), where N (o, z, M)dadz is the number of
perimeter sites with p; > 0 such that a < o; < a + da
and within the annulus [z,z + dxz]. The distribution
N(a,z, M) can be related to the three functions dis-
cussed in the introduction.

(a) n(e, M). By integration of N(a,z, M) over z, we
have

n(a,M):/da:N(a,w,M). (7

(b) P(z,M). If we use Eq. (1) together with the rela-
tion R = MY — which reflects the well-established fractal
structure of DLA — to write the growth probability as
M~"*, then

P(z, M) = /da N(a, 2, M)M~—>=. (8)

(c) pa(z,M). One possibility to express p4(z, M) in
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terms of N(a,z, M) is by using Egs. (5) and (8). Inte-
gration of Eq. (5) with respect to M yields

M
pA(gc,M)=/1 dM’/daN(a,x,M')(M’)“’“. (9a)

However, we would like to point out another relation-
ship that does not involve an integration over the growth
history of the cluster. First, note that N(a,z, M) only
describes perimeter sites with growth probability p; > 0
(alive perimeter sites — in contrast to dead sites with
p; = 0; see Fig. 1). We denote the annular density profile

of alive perimeter sites by pSf) (z, M) and that of dead

perimeter sites by pff)(w,M ), both defined in analogy
to pa(z, M), which describes the density of cluster sites.
The sum pff)(m, M) + pff)(:z:,M) describes all perime-
ter sites of clusters of mass M. Since DLA is a treelike
fractal object [31], we expect the annular density of all
perimeter sites to be proportional to the annular density
of cluster sites p4(z,M). Furthermore, as one can see
from Figs. 2 and 3, the spatial distributions of dead and
alive sites are in good approximation proportional to each
other, i.e., pff)(:c, M) ~ pff) (z, M); a detailed discussion
is given in Appendix A. Consequently, we expect

palz, M) ~ /da N(a,z, M). (9b)

III. SIMULATION APPROACH

A calculation of the joint distribution N(a,z, M)
shows that the z dependence is approximately Gaus-
sian, centered around a value £ = (z) with variance

& (a, M) = (z?) — (z)?, i.e.,

Nz, M) o exp [_M} . (10)

1
2m€2(a, M) 26%(a, M)

Here, the brackets ( ) indicate an expectation value with
respect to the empirical distribution N(a,z,M), i.e.,
(f(z)) = [dzf(z)N(a,z, M)/ [ deN(a,z, M).

In Fig. 4, we show N(a,z, M) with M = 20 000 for o
values of 1.1, 1.5, 1.9, 2.3, and 2.8 vs +(z — )2, where

L

(a) (b)

L+ &

() (d) (e)

FIG. 1. (a) The lowest-order configuration which contains
a dead site (x). (b)—(e) Examples of higher-order configura-
tions containing dead sites.
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the + sign applies if £ > Z and — otherwise. The Gaus-
sian approximation (10) is justified, since we observe
for positive and negative abscissa values an approximate
straight-line behavior of N(a,z,M). For each «, the
modulus of the slope m(ca) of these lines relates to the
width of the Gaussian function, |m(a)| = 1/2¢2(a, M).
Apparently, £(a, M) increases with a. In other words,
highly screened growth sites are less localized than the

FIG. 2. (a) Dead and (b) alive growth sites of a DLA clus-
ter with M = 20 000, indicating the similar spatial distribu-
tion of both types of perimeter sites. Dead sites are perimeter
sites with p; = 0. Reference [19] finds that the number of dead
perimeter sites in DLA is proportional to the number of all
perimeter sites. In our case, dead sites constitute a fraction
of = 42% of the perimeter sites.

e

o

=]
T

FIG. 3. Comparison of the two distributions D of dead
sites, pff)(z,M) (broken line), and of alive sites, pff)(a:,M)
(solid line). To demonstrate that both are distributed in a
similar fashion, we have scaled p(:)(:z:, M) by the ratio of the
number of alive to dead perimeter sites (= 1.36).

exposed growth sites in the active region of the cluster
that are characterized by small values of a. The approx-
imation is worse for * < &, where especially for large
values of o the presence of the cluster center distorts the
pure Gaussian behavior [34].

In Fig. 5 we demonstrate that « sites are located in
approximate annuli around the center of the cluster by

105 T T T T T T T T T

10

10
=
>
S
T
10!
100 1 1 " 1 " 1 N 1
-0.50 -0.25 0 0.25 0.50

i:[x—<x(zx,M)>]2

FIG. 4. N(a,z,M) averaged over 18 clusters of mass
M = 20 000. Different symbols denote different values of
a: 1.1 (O), 1.5 (O), 1.9 (A), 2.3 (V), and 2.8 (e). To test
whether the z dependence of N(«,z, M) can be represented
by a Gaussian function, we plot +(z — (x))? on the abscissa,
where the + sign applies if £ > (z) and the — sign other-
wise. The ordinate scale is logarithmic. Thus Gaussian be-
havior manifests itself in two straight lines emanating from
z — (z) = 0 with slopes of opposite sign but equal magnitude.
The two solid lines in the plot illustrate this behavior and are
intended as guides to the eye for the case a = 1.1.
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FIG. 5. Location of « sites from 18 off-lattice DLA clus-
ters of M = 20 000. In (a) we have 1.5 < a < 1.9, in
(b) 2.8 < a<3.0,and in (c) a> 6.

displaying all the “live” (p; > 0) perimeter sites of 18
superposed off-lattice DLA clusters of M = 20 000 for
three distinct values of a. In contrast, the dead sites of a
cluster, as shown in Fig. 2a, are distributed with a density
proportional to that of the alive sites (cf. Appendix A),
which, for comparison, are displayed in Fig. 2b.

The M dependence of the width £(«, M) is shown in
Fig. 6(a). We cannot identify an unequivocal limit behav-
ior as a function of M. For certain values of «, §{(a, M)
seems to decrease as M — oo — for others an increase is
observed. The best statistics are obtained for a =~ 1.36,
for which we find a decreasing width. Since asymptoti-
cally £(a, M) can certainly not increase — which would
correspond to the statement that the growth zone would
become larger than the cluster itself — we are clearly
still in a mass regime where finite-size effects play an im-
portant role. Thus, we will have to discuss several possi-
bilities for the M dependence of {(a, M) in the following
sections.

The M dependence of the mean Z(a, M) is plotted
in Fig. 6(b). Unlike in the case of the width (o, M),
here the limit behavior for large M is manifest. For
small values of «, (o, M) decreases with M while for
large o, Z(a, M) increases with M. However, in both
cases Z(a,z, M) converges towards an M-independent
limit Z(a), as shown in Fig. 6(c). Note that Z(a) is a
monotonically decreasing function and thus invertible.
The decrease of Z(a) with o results from the stronger
screening (large «) in the interior of the cluster (small

IV. MULTISCALING OF P(z, M) AND p,(z, M)

Next we discuss the functional form of the new distri-
bution function N(o,z, M). As we have shown above,
our calculations are consistent with the possibility that
for large M, N(a,xz, M) is a Gaussian function [32] in z,

vf(a & 2
N(o,z, M) = M ) exp [—7[‘% 2(a)] ] . (11)

2m€2 (a, M) 282 (o, M)

In (11) we write £ = z(c), since we have found that z
for large M depends only on a. The term M*f(®) in the
prefactor of the Gaussian ensures that n(a, M) has the
multifractal form (2), as one can see by integration with
respect to x.

We next discuss the implications for multiscaling of
several possibilities for the functional dependence of the
width £(a, M) on a and M. Preserving the multifractal
properties of the distribution, we explore three mutually
exclusive cases for the mass dependence of (o, M).

(A) Constant width, {(a, M) = A(a). A constant
width corresponds to the possibility that both the av-
erage location of the « sites and the width of the growth
zone are not mass dependent, implying that both length
scales are proportional to the cluster radius R.

(B) “Strong localization,” (o, M) = A(a)M ™Y,y > 0,
corresponds to a fast decrease of the width of the spatial
distribution of the o sites. Asymptotically, the o sites
are located at the same distance z(a) from the cluster
seed.
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(C) “Weak localization,” ¢(a,M) = A(a)/vVInM,
where the width still tends to zero, but in a logarith-
mic fashion with intriguing implications for the scaling
behavior of P(z, M) and pa(z, M).

A. Constant width: {(a, M) = A(a)

Substituting relation (11) into (8), we obtain for the
Plischke-Réacz probability

QMM o= ()P
Ple, M) = /d 2w A?(a) P [ 24%(a) ] )
(12)

Performing a steepest-descent analysis of (12), we now
calculate the value a* of a at which the integrand is

maximal. In the M — oo limit, the resulting condition
for a* is

d

— ar = 1. 13

2 5l (13)
The value of a* which satisfies Eq. (13) is known to be
unity [33], moreover, for & = 1 we have f(a) = 1. Thus,
in case (A), P(x, M) is M independent and has Gaussian
shape with constant width £ = A(1), i.e.,

exp [Jii@_”_] . ()

P(z, M) ~ 242(1)

1
2mA2(1)

Equation (14) does not explicitly depend on M and thus
P(z, M) obeys standard scaling.
We perform a similar analysis to evaluate the expres-

T R T T T 7 T T T T T T T T T T
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FIG. 6. (a) The width £(a, M) and (b) the mean position (z(a, M)) vs M for several values of a. Different symbols denote
different « values, 0.68 (Q), 1.36 (O), 2.04 (4A), 2.72 (v), 3.40 (e), 4.08 (m), 4.76 (4), and 5.95 (V). The data are averaged
over 18 off-lattice DLA clusters. In (c) (z(c, M)) is plotted as a function of a. Here, different line styles correspond to different

cluster masses (see legend).
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sion (9b) for the density profile of the cluster,

a(z, M) ~ /d

Here, the condition for the saddle-point value a* in the
limit of large M becomes

Myi() [z — z(a)]?
Ver A (@) P [” 242(a)

] . (15)

d
—f(@)la = 0. (16)

The maximum f(a*) has the value f(a*) = 1/v, so that
the density can be written as

[z — 2(a")]?

pal@, M)~ 242%(a*)

%exp - |- an

Formally, Eq. (17) can be cast into the form of Eq. (6),

/v z — z(a*)]?
pA(va) Rl/v rl/v ex pl: [ ZAZ((OZ*))] :I

= rl/”c,,(w). (18)

Note that in case (A) the exponent of r is independent
of = and thus also p4(z, M) obeys standard scaling.

It is instructive to note the meaning of the values a*
from Egs. (13) and (16) in the multifractal spectrum.
The probability to grow at a site with a specific value of
a is maximal when the product of growth probability and
number of sites with this probability, and thus f(a) — a,
is maximal. As can be seen by differentiating with re-
spect to a this condition is equivalent to relation (13),
from which results the dominant value o* that controls
the P(z, M) integral (12). In contrast, the mass distri-
bution p4(x, M) (15) in the cluster is controlled by the
« value corresponding to the maximum of f(a), which is
the fractal dimension of the set comprising the “major-
ity” of growth sites.

However, the simple possibility that the width £(a, M)
of N(a,z, M) is independent of M appears questionable.
First, a recent calculation [34] indicates that the width
of P(z, M) decreases with M. Second, simulation results
for off-lattice DLA clusters with M up to 5 x 107 [29] are
consistent with the multiscaling relation (6) for p4(z, M)
which precludes an M independent width £(a, M).

B. Strong localization: ¢((a, M) = A(a)M ¥

The implications for case (B), {(a, M) = A(a)M 7Y,
are quite different from case (A). Now, the analog of Eq.
(12) for the Plischke-Racz probability becomes

Muf(a)—ua
Pz, M) = / do—m
V21w A2 (o) M —2y

X exp [_sz %] . (19)

For sufficiently large M, the Gaussian function in the
integrand tends to a § function centered at z,

z = Z(a). (20)
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Given an annulus z, there is only one value of o = a(z)
given by the inverse function of Z(a) — the monotonicity
of Z(a) guarantees the existence of a(z) (cf. Sec. III and
Fig. 5).

Using (20), we can compare P(z, M), Eq. (19), to the
multiscaling form (4) and find that

$(2) = ~vf(a(@)) + va(a). (21)
Thus, in contrast to case (A), case (B) results in multi-
scaling.

In the same fashion, from (9a) and (11) we can demon-
strate multiscaling for the density profile of the cluster.
Again the Gaussian function in (11) tends to a § func-
tion centered at z = Z(o) and thus (20) also determines

a(z) for the density profile. The resulting density profile
pa(z, M) is

pala, M) ~ M@ 1S E@C,),  (22)
and displays multiscaling as in Eq. (6) with
D(z) = f(a(x)), (23)

in agreement with the result of Ref. [27].

The results (21) and (22) are not altogether surprising.
In fact, the distribution N(co, z, M) for fixed a tends to
a d function as M — oo. In this limit, almost all the
sites with a specific a value are located at distance Z(«)
from the cluster seed — such that we refer to case (ii)

s “strong localization.” Vice versa, a specific location
z singles out an « value a(z). From f(a) we then ob-
tain the fractal dimension of the set of these a(z) sites.
Equation (22) can now be understood just as the usual re-
lationship between mass and extension of a fractal object
and, similarly, M~%() which describes the probability
of deposition at x, is just the product of the growth prob-
ability M~*>(®) at 2 and the multiplicity of the growth
sites at z, M¥f(a(=)),

In the case of strong localization it is particularly sim-
ple to obtain an understanding of the relationship be-
tween cluster structure and the distribution of growth
probabilities. The large a part of f(a) reflects the prop-
erties of the frozen region (small z) of the cluster, where
the p; are so small that effectively no further growth will
occur. One expects that the mass distribution in the
frozen region is characterized by the fractal dimension
of DLA. This assumption is supported by the results of
Refs. [28,29,34,35]. However, since a(z) is not constant
for small z, and if our assumption (11) for the form of
the joint distribution function N (e, z, M) is still valid,
then f(a) has to be independent of a for large a. In fact,
the phenomenon of a “phase transition” [36,37] in DLA
is consistent with such a behavior of f(a) [22].

C. Weak localization: £(a, M) =

A(a)/vVInM

For case (C), £(a, M) = A(a)VIn M. The exponential
in the integrands of (12) and (19) turns into a power law



InM 2
ﬂ[yf(a)—ua—[z z(a)]?/24 (a)
2w A2(a)

P(a, M) = /

Given a value z, a steepest-descent analysis of this inte-
gral yields

(24)

0

2 (vf(a) - =, (25)

[z — 2()]?
o) )

a*

as condition for the value o* maximizing the integrand.
As we vary z, the changing value a* defines a function
ap(z) which enables us to write the Plischke-Racz prob-
ability as

P(z, M) = Cpr(z)M~¢®), (26)

where

[z — 2(ap(z))]?
2A%(ap(x))

and Cpgr(z) is an amplitude. By comparison of relation
(26) to Eq. (4) we see that case (C) like case (B) results in
multiscaling, but with a much more complex multiscaling
“exponent” ¢(x).

Although the width £(a, M) of N(«a,z, M) in case (C)
still approaches zero for large M, we note that, in con-
trast to case (B), a* is no longer “characteristic” for the
shell £ — in the sense that Eq. (20) no longer holds.
Thus, we refer to case (C) as a case of “weak localiza-
tion.”

To analyze pa(z, M), we first write the condition for
a*. In analogy to (25),

2 (uf(a) -

The o* values satisfying Eq. (28) define a function o, (),
when z is varied. Unlike the strong localization case
(B), a,(z) differs from ap(x). We can use the function
a,(z) and the method developed in Eq. (18) to express
pa(z, M) as

¢(z) = —vf(ap(z)) +vap(z) + » (27)

=0. (28)

a*

pa(z, M) = Cp(a:)TD(m)’ (29)
where C,(z) is an amplitude and the multiscaling expo-
nent

= Hap(z)) - E=2lanl@D] (30)

Di) 204 (a, (2))

The numerical data presented in Sec. III are not suffi-
cient to distinguish between cases (A)—(C) for all values
of . However, for the particular value a = 1.36, for
which the statistics is good, we find the data consistent
with case (C). In the following section we will provide
further support for the multiscaling idea.

In the preceding discussion we have seen that the ex-
istence of two different length scales, namely the average
location Z(a) and the width £(a, M) in cases (B) and (C)
leads to multiscaling for both P(z, M) and p4(z, M). In
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contrast, we do not find multiscaling in case (A), where
only one length scale is present — both Z(a) and £(a, M)
are M independent.

V. MULTIFRACTALITY

Another interesting quantity — possibly accessible to
experimental measurements — is the scaling behavior of
“moments” of N(a,z,M). In this section, we will define
a multifractal analysis for the p; contained in an annulus
at distance z in analogy to the multifractal formalism
presented, e.g., in Refs. [20,21].

Usually, a multifractal analysis is performed on a set
of numbers that are normalized. However, the sum of
the growth probabilities p; restricted to an annulus is
less than one, since the p; are normalized with respect to
the entire cluster. Here, we will base our analysis on the
unnormalized set of p; at a specific distance x from the
cluster seed and postpone to Appendix B a discussion of
what happens if we use normalized probabilities instead.

Our first step is to define a “partition function”

Z(g,z, M) = /daN(a,z,M)M_q”a, (31)

where g is an arbitrary real number [30,38]. The function
Z(q,z, M) can also be considered the gth “moment” of
the distribution N (o, z, M). Second, we define the scal-
ing indices 7(g, z) as a function of ¢ for different z by

In Z(q,z, M)

32
vinM (32)

o) = - i
If 7(q, z) is a linear function of ¢, then conventional “gap
scaling” is obtained, while otherwise we call the mea-
sure underlying the “moments” Z(q, z, M) multifractal.
Tt is then convenient to introduce the Legendre transform
fr(ar, ) of 7(q, )

7]
fr(ap,z) = gap —7(q,x) where af = a—qT(q,m). (33)

The quantity fr(ar) can be interpreted as the fractal
dimension of the set of points characterized by ar [20]
in the annulus z. We analyze the scaling behavior of
the moments by performing a steepest-descent analysis
of (31). Substituting N(c,xz, M) in its analytical form
(11) into Eq. (31) yields

Z(q,z, M) = /d

As in Sec. IV we will now discuss the consequences of
different asymptotic behavior of the width of the growth
zone of the cluster.

Muf(a) vqo

e [_ [z — f(a)]z] .

2£% (o, M)
(34)

A. Constant width: ¢(a, M) = A(a)

For the case of constant width (cf. Sec. IV A), we find
that the dominant contribution to the integral (34) arises
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at a value a* = a*(1) given by

d

2 )a = q. 35

4 fea = (35)
From Eq. (35), we can anticipate the result

fr(ar,z) = f(ar), (36)

which we obtain after consideration of Egs. (32) and (33).
Equation (36) states that for case (A) the full, unaltered
multifractal spectrum is found in all annuli . Thus,
given the validity of Eq. (11), a constant width of the
growth zone can only be maintained, if sites with both
low and high growth probabilities are distributed evenly
in the cluster [39].

However, due to the the screening of the interior re-
gions of the cluster, the growth probabilities for small z
are significantly smaller than at the exposed sites on the
exterior of the cluster. These smaller probabilities result
in a shift of the distributions N(a, z, M) to larger values
of a for small . Thus, the multifractal spectrum fr(ar)
differs for different z (cf. [38] for the 3D case), in contrast
to the result (36) above.

B. Strong localization: ¢{(a, M) = A(a)M™Y

For the strong localization case (Sec. IV B), the Gaus-
sian term in (34) tends to a ¢ function localized at x given
by Eq. (20) whose inversion gives a = a(z). Now, we use
for Z(q,z, M) in Eq. (32) the value of the integrand in
(31) at a = a(z). The resulting scaling indices 7(q, ),

7(g,z) = ga(z) — f(a(2)), (37)

are linearly dependent on ¢ for fixed z. Thus, in
case (B) gap scaling of the moments Z(q,x, M) results.
The fr(ar) corresponding to (37) is the point [ar =
a(@); fi, = f(a(z)) ]

The absence of multifractality in a given annulus z in
case (B) is not surprising, since the strong localization of
a sites implies a very narrow spread of a values within a
specific shell z. Narrow distributions, however, typically
display gap scaling of their moments.

C. Weak localization: ¢(a, M) = A(a)/vIn M

Again, the weak-localization case is quite different.
The value a* maximizing the integrand of (31) is given

by
2 (vt - Bl

In contrast to Eq. (35), where the solution depends on ¢
only, here a* is a function of both ¢ and z, and we write
a* = ag(z). From Eq. (32), we obtain

= vgq. (38)

a*

[SL‘ - j(aq(x))F . (39)

7(¢,2) = vf(aq(z)) — vag(z)q - 2A2(ay(z))
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In (39) 7(g,x) is a nonlinear function of both ¢ and z, so
that its Legendre transform (33) depends on x. Thus, in
case (C), the multifractal spectrum fr(ar,x) is a func-
tion of the location of the annulus . In contrast to case
(B), the width £(a, M) approaches zero so slow that the
multifractality of case (A) is not destroyed as in case (B),
but altered in its character. In fact, the = dependence of
the multifractal spectrum fr(ar,z) is the hallmark of
multiscaling as encountered for P(z, M) and pa(z, M)
in case (C), Sec. IV.

In Fig. 7 we display 7(q, z) for different values of z as
a function of ¢ [35].

For large |g| the function 7(g, x) tends to straight lines
with different slopes. The definitions (31) and (32) show
that for ¢ < 0 the slope is determined by the mass depen-
dence of the smallest growth probability pmin(z) within
the annulus = and for ¢ > 0 by the mass dependence of
the largest growth probability pmax(z), respectively. Es-
pecially in the region 0 < ¢ < 1, we observe a pronounced
curvature of 7(g,z). Since the strong-localization case
predicts a linear behavior of 7(g, ) over the entire range
of q values, we conclude that our findings disfavor strong
localization.

Moreover, we see that 7(g,z) displays variation with
the parameter z. If z becomes smaller, both ppyi,(z) and
Pmax(z) as functions of the cluster mass decay faster,
because the interior frozen regions of the cluster are
screened stronger. Thus, the two asymptotic slopes (for
g — =£o00) of 7(g,z) increase. For example, for any
given ¢, 7(gq,z = 1.9) has everywhere a slope less than
7(g,z = 0.7). As a consequence, also the Legendre trans-

T T T T
YA x =01
. —10 //,/2 ---x = 0.7 —
" e/ x =13
£ AL -—x = 1.5
-5 ./ .0 —x =19 .
s
)
-20 ¢ /;///é 7
’/ /o
-25 [ /o -
,
/lo
-30 F° -
i 1 1 1
-3 -1 1 3 5
q

FIG. 7. Dependence on q of 7(gq, z) for different values of .
Here, 7(g, ) was determined by fitting a straight line through
the three data points corresponding to M = 5000, 10 000, and
20000 in a plot of In Z(g, z, M) vs In M averaged over 18 DLA
clusters. Different line styles denote the different = values
(legend). For comparison, we plot the 7(g) resulting from an
analysis of the growth probabilities of the entire cluster (O).
Since 2D DLA displays a phase transition [40,41], 7(q, z) for
negative g can only be considered an “effective” exponent
which will display larger and larger slopes as M — oco.
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TABLE I. Summary of multifractal and multiscaling features arising in cases (A), (B), and (C).

pa(z, M) P(z, M) N(a,z, M)
Multiscaling Multiscaling Multiscaling Multifractal
(A) € = A(e) no no no yes
(B) ¢ = A(a)/ MY yes yes yes no
(C) ¢ = A(a)/VIn M yes yes yes yes

forms of 7(q,z) are  dependent. This finding is consis-
tent with the weak localization case (C). However, due to
the comparatively small clusters that we have analyzed,
we cannot exclude cases (A) or (B).

In Fig. 7 we see that 7(q, ) only starts to change ap-
preciably for quite large z values around z = 1.5. A simi-
lar phenomenon is observed in the numerical multiscaling
analysis of the annular density of the cluster. There, the
function D(z) is approximately constant = 1/v up to x
values of similar magnitude before D(z) drops to zero
over a comparatively small range.

For 3D off-lattice DLA, the multifractal properties of
the growth probabilities {p;} in an annulus were calcu-
lated in [38]. Although no statement about N(a,z, M)
for 3D DLA was made, the results display qualitatively
the behavior predicted above in the cases (A) and (C)
for 2D DLA.

VI. CONCLUSION

We have discussed different possibilities for the analyti-
cal form of the joint distribution function N(«, z, M). For
cases (B) and (C), where two different length scales en-
ter into N(a,z, M), we find multiscaling behavior of the
Plischke-R4cz probability P(z, M) and the density pro-
file p4(z, M) of DLA clusters. Moreover, we find that the
scaling behavior of the moments of the growth probabil-
ity distribution constrained to an annulus z is different
in all cases. For (A) and (C), we encounter multifractal-
ity, which in case (C) bears an additional feature typical
for multiscaling: the = dependence of a scaling “expo-
nent.” Our data and previous work are consistent with
case (C), although further numerical work to clarify the
rich scaling properties of N(a,z, M) is clearly desirable.

Our results for all the different cases discussed above
are summarized in Table I.
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APPENDIX A: SPATIAL DISTRIBUTION OF
DEAD AND ALIVE PERIMETER SITES

In this appendix, we discuss the properties of the dis-
tribution of dead perimeter sites [19]. These sites with

growth probability exactly equal to zero result because
specific configurations of cluster sites enclose perimeter
sites in such a way that they can no longer be reached
from the exterior of the DLA cluster. If dead sites are
predominantly formed due to specific local configura-
tions, then the fraction of perimeter sites that are dead
will not change as the cluster grows [19]. Moreover, the
spatial distribution of dead sites is then proportional to
the distribution of alive sites, i.e.,

P (@, M) ~ p§) (2, M) ~ pa(=, M). (A1)

On the other hand, if the dead sites were found mainly
near the region of small p;, then pgi)(w,M) would be
shifted towards the center of the cluster. In Fig. 3, we
notice that the shape of both distributions looks almost
identical. The similarity in form is an evidence favorable
to the above-stated “local configuration argument” and
shows that the dead sites are uniformly distributed over
the cluster.

The simplest local configuration producing a dead site
is the L configuration shown in Fig. 1(a). In general, also
more complicated configurations will contribute [Figs.
1(b)—(e)]. A coarse graining over the scale of lowest-
order configurations of this kind is necessary to see that
the densities of dead and alive perimeter sites are propor-
tional. Reference [19] finds a value (0.365=+0.010) for the
ratio of the number of dead perimeter sites to the total
number of perimeter sites for 2D square-lattice DLA.

APPENDIX B: CONSEQUENCES OF
NORMALIZATION FOR THE MULTIFRACTAL
ANALYSIS

Here, we will briefly explore the consequences of nor-
malizing the growth probabilities p; within an annulus
x prior to performing the multifractal analysis suggested
in Sec. V. We determine an z- and M-dependent nor-
malization factor M'(z, M) to multiply each p;, such that
the sum over the growth probabilities for fixed x equals
1. The normalization procedure alters the value of a
associated with each p; to

&; =Ilnp;/InR —1nN(z,M)/InR. (B1)
Now, the distribution of the & is N(&,az,M), which is
related to N(a,z, M) by

N(&,z,M) = N[a —InN(z,M)/InR,z,M]. (B2)
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In analogy to Eq. (31) we denote the gth moment of
N(&,z,M) by Z(q,z, M), i.e.,

Z(q,x, M) (B3)

/dd N(&,z, M)M ™%

1

= W/daN(a,z,M)M_q”a (B4)

=z, M)

Wz, M) (B5)

From the normalization we know that the first moment
of N(&,z, M) is equal to 1. It follows that N (z, M) =
Z(1,z,M).

We continue along the lines in Sec. V and define the
equivalent 7(gq,z) to 7(g,z),

. _ . Oln Z(q,m,M)
U i e Y (B6)
. OIlnN(z,M
=7lae) +a fim TSR w0

If the normalization constant N (z, M) displays power-
law scaling with the cluster size R, then 7(g,z) and
7(q,z) differ only by a linear function. How does this
difference affect the Legendre transform of 7(g,z) when
we compare it to the transform of 7(g, ), which is de-
fined in Eq. (33)? First, we calculate the slope &g of

7(g, ),

_ 07 (g, )

dln N (z, M)
ar, — 5
9q

dlnR (BS)

= l'

o+ Rl—I)noo
Since N (x, M) is always less than one, we see that & is
merely oy shifted by a constant to smaller values. Sec-
ond, Legendre transforming 7(q,z) yields

fr(ar) = gar — #(q,x) (B9)
B . OlnN(z,M)
=ga+g lim —ar o (B10)
OlnN(z, M)

—7(0,®) — ¢ lim —F7 &

=qa —7(g,z) = fr(ar). (B11)
Thus, we retain the functional form of the Legendre
transform fr(ar) of 7(q,z) and the only difference to
f(ay) is that the latter is shifted towards smaller values
of a.

For example, if we use the formalism presented in
this appendix to calculate the fr(&r) for the strong-
localization case (cf. Sec. VB), we find that

fi(@r) = fr,

where fr denotes the constant value of fr(a(z)) for a
given z. In order to interpret the result (B12), con-
sider the normalization condition ), p;(z) = 1 within
an annulus. In the strong-localization case, the annu-
lus z is characterized by only one a. Thus, the product
M~v&MvF(&) must be constant, leading to & = fr.

a= fL’ (B12)
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